Exercise 75

Find all points on the curve $x^{2} y^{2}+x y=2$ where the slope of the tangent line is -1 .

Solution

Differentiate both sides with respect to x.

$$
\frac{d}{d x}\left(x^{2} y^{2}+x y\right)=\frac{d}{d x}(2)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2} y^{2}\right)+\frac{d}{d x}(x y)=0 \\
{\left[\frac{d}{d x}\left(x^{2}\right)\right] y^{2}+x^{2}\left[\frac{d}{d x}\left(y^{2}\right)\right]+\left[\frac{d}{d x}(x)\right] y+x\left[\frac{d}{d x}(y)\right]=0} \\
(2 x) y^{2}+x^{2}(2 y) \frac{d y}{d x}+(1) y+x \frac{d y}{d x}=0
\end{gathered}
$$

Set $d y / d x$ to -1 and simplify the equation.

$$
\begin{gathered}
2 x y^{2}+2 x^{2} y(-1)+y+x(-1)=0 \\
2 x y^{2}-2 x^{2} y+y-x=0
\end{gathered}
$$

Multiply both sides by $x y$.

$$
\begin{gathered}
2 x^{2} y^{3}-2 x^{3} y^{2}+x y^{2}-x^{2} y=0 \\
y\left(2 x^{2} y^{2}+x y\right)-x\left(2 x^{2} y^{2}+x y\right)=0 \\
(y-x)\left(2 x^{2} y^{2}+x y\right)=0 \\
(y-x)\left[x^{2} y^{2}+\left(x^{2} y^{2}+x y\right)\right]=0 \\
(y-x)\left(x^{2} y^{2}+2\right)=0
\end{gathered}
$$

Since $x^{2} y^{2}$ is never negative, the factor $x^{2} y^{2}+2$ is positive. Divide both sides by $x^{2} y^{2}+2$.

$$
\begin{gathered}
y-x=0 \\
y=x
\end{gathered}
$$

Find where this line intersects the curve by solving the following system of equations.

$$
\left.\begin{array}{r}
y=x \\
x^{2} y^{2}+x y=2
\end{array}\right\}
$$

Substitute the formula for y into the second formula and solve for x.

$$
\begin{gathered}
x^{2}(x)^{2}+x(x)=2 \\
x^{4}+x^{2}=2 \\
x^{4}+x^{2}-2=0 \\
\left(x^{2}+2\right)\left(x^{2}-1\right)=0 \\
\left(x^{2}+2\right)(x+1)(x-1)=0 \\
x+1=0 \quad \text { or } \quad x-1=0 \\
x=-1 \quad \text { or } \quad x=1
\end{gathered}
$$

The y-value corresponding with $x=-1$ is $y=-1$, and the y-value corresponding with $x=1$ is $y=1$. Therefore, the points on the curve $x^{2} y^{2}+x y=2$ where the slope of the tangent line is -1 are $(-1,-1)$ and $(1,1)$.

The graph below illustrates the curve and the tangent lines with slope -1 .

